Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.
KMID : 0043320070300091080
Archives of Pharmacal Research
2007 Volume.30 No. 9 p.1080 ~ p.1087
Reactive Oxygen Species Mediate ET-1-Induced Activation of ERK1/2 Signaling in Cultured Feline Esophageal Smooth Muscle CellsReactive oxygen species (ROS) have been shown to play a critical role in propagating the signals of several growth factors, peptide hormones, and cytokines, such as epidermal growth factor, insulin, and interleukin-1. We investigated a possible role for ROS generation in mediating the action of ET-1 on activation of ERK1/2 in cultured feline esophageal smooth muscle cells (ESMC). Confluent layers of ESMC were stimulated by 10nM ET-1; activation of ERK was examined by western blot analysis with phospho-specific antibodies of ERKs. ET-1 induced ERK1/2 phosphorylation in a dose- and time- dependent manner. ERK1/2 activation by ET-1 reached the maximal levels at 5min showing slight activation up to 20min, and then slowly declined. It was confirmed that the activation of ERK1/2 was reduced by MEK inhibitor PD98059. We observed the dose-dependent inhibitory effect of diphenyleneiodonium (DPI), an inhibitor of reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase on the ET- 1-enhanced ERK1/2 phosphorylation in ESMC. Pretreatment of ESMC with N-acetylcysteine, a ROS scavenger, also attenuated the ET-1-induced ERK1/2 activation. In addition, DPI significantly inhibited the ET-1- induced ROS production when ROS was measured as a function of DCF fluorescence. The results suggest that ROS might be critical mediators of the ET-1- induced ERK1/2 signaling events in ESMC.
Song Hyun-Ju

Sohn Uy-Dong
Kim Ji-Soo
Lee Myong-Jae
Nam Yun-Sung
Abstract
Reactive oxygen species (ROS) have been shown to play a critical role in propagating the signals of several growth factors, peptide hormones, and cytokines, such as epidermal growth factor, insulin, and interleukin-1. We investigated a possible role for ROS generation in mediating the action of ET-1 on activation of ERK1/2 in cultured feline esophageal smooth muscle cells (ESMC). Confluent layers of ESMC were stimulated by 10nM ET-1; activation of ERK was examined by western blot analysis with phospho-specific antibodies of ERKs. ET-1 induced ERK1/2 phosphorylation in a dose- and time- dependent manner. ERK1/2 activation by ET-1 reached the maximal levels at 5min showing slight activation up to 20min, and then slowly declined. It was confirmed that the activation of ERK1/2 was reduced by MEK inhibitor PD98059. We observed the dose-dependent inhibitory effect of diphenyleneiodonium (DPI), an inhibitor of reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase on the ET- 1-enhanced ERK1/2 phosphorylation in ESMC. Pretreatment of ESMC with N-acetylcysteine, a ROS scavenger, also attenuated the ET-1-induced ERK1/2 activation. In addition, DPI significantly inhibited the ET-1- induced ROS production when ROS was measured as a function of DCF fluorescence. The results suggest that ROS might be critical mediators of the ET-1- induced ERK1/2 signaling events in ESMC.
KEYWORD
ERK1/2, ET-1, Esophageal Smooth Muscle Cells, ROS
FullTexts / Linksout information
Listed journal information
SCI(E) MEDLINE ÇмúÁøÈïÀç´Ü(KCI)